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Abstract

This paper considers the Riemann problem and an associated Godunov method for a model of compressible two-
phase flow. The model is a reduced form of the well-known Baer–Nunziato model that describes the behavior of
granular explosives. In the analysis presented here, we omit source terms representing the exchange of mass, momentum
and energy between the phases due to compaction, drag, heat transfer and chemical reaction, but retain the non-
conservative nozzling terms that appear naturally in the model. For the Riemann problem the effect of the nozzling
terms is confined to the contact discontinuity of the solid phase. Treating the solid contact as a layer of vanishingly
small thickness within which the solution is smooth yields jump conditions that connect the states across the contact,
as well as a prescription that allows the contribution of the nozzling terms to be computed unambiguously. An iterative
method of solution is described for the Riemann problem, that determines the wave structure and the intermediate
states of the flow, for given left and right states. A Godunov method based on the solution of the Riemann problem
is constructed. It includes non-conservative flux contributions derived from an integral of the nozzling terms over a grid
cell. The Godunov method is extended to second-order accuracy using a method of slope limiting, and an adaptive
Riemann solver is described and used for computational efficiency. Numerical results are presented, demonstrating
the accuracy of the numerical method and in particular, the accurate numerical description of the flow in the vicinity
of a solid contact where phases couple and nozzling terms are important. The numerical method is compared with other
methods available in the literature and found to give more accurate results for the problems considered.
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1. Introduction

This paper considers the Riemann problem and an associated high-resolution Godunov method for a
system of nonlinear, hyperbolic partial differential equations modeling compressible, two-phase flow. While
models of this kind arise in a number of applications, the context of deflagration-to-detonation transition in
high-energy condensed-phase explosives provides the motivation for the present effort. A two-phase contin-
uum description of granular explosives has been provided by Baer and Nunziato [1]; also see the contem-
poraneous study of Butler and Krier [2], the earlier work of Gokhale and Krier [3], and the later papers of
Powers et al. [4,5]. The model treats the explosive as a mixture of two phases, the unreacted granular solid
and the gaseous product of combustion. Each phase is assigned a set of state variables such as density,
velocity, pressure, etc., which are assumed to satisfy balance laws of mass, momentum and energy. A com-
paction equation and a saturation constraint for the volume fractions of the phases complete the system of
equations. The balance laws for each phase are similar to those for an isolated gas, i.e., the Euler equations,
except for two important differences. First, the exchange of mass, momentum and energy between the
phases appears as source terms in the balance equations. Second, the governing equations, although hyper-
bolic, are incapable of being cast in a conservative form. Non-conservative terms (also called nozzling terms

by analogy with similar terms arising in equations that govern flow within a variable-area duct) appear in
the equations, and their treatment requires special consideration.

The aim of this paper is twofold. First, we consider the Riemann problem for the homogeneous portion
of the governing equations (i.e., with the source terms omitted), and describe an iterative procedure that
produces exact solutions for general left and right states of the initial flow. In the Riemann problem the
effect of the nozzling terms is confined to the contact discontinuity of the solid phase, across which the vol-
ume fraction of each phase changes discontinuously. It is assumed that the discontinuity can be replaced by
a layer of finite but vanishingly small thickness within which the volume fractions vary smoothly and the
phases interact. This regularization was first proposed in the context of permeation through a porous solid
by Asay et al. [6]. An analysis of the layer yields jump conditions for the states of the flow across the solid
contact, and allows the contribution of the nozzling terms to be computed in a straightforward and unam-
biguous fashion. Away from the solid contact the volume fractions are constant so that balance equations
for the phases decouple and reduce to Euler equations for the individual phases. In these regions the usual
jump conditions across shocks, rarefactions and the gas contact discontinuity apply, and may be used
together with the conditions across the solid contact where the phases are coupled to construct an exact
solution of the Riemann problem for the mixture.

Next, the solution of the Riemann problem is employed in the development of a high-resolution Godu-
nov-type method [7]. In addition to providing a means to compute a numerical flux at the boundary be-
tween neighboring grid cells, the solution of the Riemann problem provides a natural approach to the
numerical treatment of the non-conservative terms. The governing equations are integrated over a grid cell.
The numerical flux at the boundary emerges from this integral in the standard way following the usual
Godunov flux construction. In the case of the non-conservative terms, the integral reduces to a contribution
about the solid contact in the solution of the Riemann problem from each cell boundary. With the thin
layer structure of the contact discontinuity at hand, this contribution can be computed unambiguously.
Thus the resulting numerical method incorporates both the wave structure at cell boundaries and the
appropriate behavior of the solution near the solid contact.

A high-resolution method is obtained using a second-order, slope-limited extension of the Godunov
method. The approach follows the usual description (see [8,9], for example) except for the treatment of
the non-conservative terms which is new. Essentially, the extension for the non-conservative terms involves
two parts, one coming from a contribution to the integral of the nozzling terms about the solid contact and
the other coming from the integral away from the jump at the solid contact, which arises from the slope
correction of the left and right states of the Riemann problems. An improvement in efficiency in the
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numerical method is made by employing various levels of approximation in the solution of the Riemann
problem. Here, we describe an adaptive Riemann solver designed to select a suitable approximation, or per-
haps the full solution, in order to achieve a sufficient accuracy at a lower computational cost.

Since its introduction, the theory of Baer and Nunziato [1] has received considerable attention in the lit-
erature. A mathematical analysis of the structure of the governing equations, including a description of the
wave fields of the hyperbolic system, its Riemann invariants and simple wave solutions, was described by
Embid and Baer [10]. In this paper, a degeneracy of the hyperbolic system, which occurs when the relative
flow between phases becomes sonic, is identified. The authors observe that this degeneracy is analogous to
choked flow in a duct, and provides a constraint on the admissible states for the Riemann problem. Mod-
eling issues, certain physically motivated reductions and numerical solutions were presented in a series of
papers by Bdzil et al. [11–13]. These papers built upon an analysis of a simpler approach described earlier
by Bdzil and Son [14] and Asay et al. [6]. In a recent paper [15], Andrianov and Warnecke revisited the
Riemann problem for the model. Using jump conditions across the solid contact, derived in [10], they
explicitly constructed inverse exact solutions corresponding to prescribed states on either side of the solid
contact. Our approach is similar to theirs but differs in one important respect: we describe an iterative pro-
cedure to obtain exact solutions of the Riemann problem directly for arbitrary left and right states. Such a
procedure is necessary as a building block for our construction of a high-resolution Godunov scheme as
indicated above and described in detail later.

The regularization of the solid contact into a thin layer across which the solution is smooth no longer
applies when the sonic condition is met, i.e., when the gas velocity relative to the solid phase equals the
sound speed in the gas. The governing equations exhibit a degeneracy in this case that requires a modified
treatment, and this situation is currently under study. However, such a circumstance is unlikely to arise in
the context of granular explosives, the application that motivates this study, and is therefore not of concern
here. In this application the drag between the phases is invariably large, and serves to keep the relative
velocity between the phases at a moderate level so that the system remains subsonic. Consequently, the
present study emphasizes the subsonic case.

Finite volume methods for the model equations, or similar forms, have been considered by Gonthier and
Powers [16,17], Saurel and Abgrall [18], Andrianov et al. [19], Saurel and Lemetayer [20], Gavrilyuk and
Saurel [21] and by Abgrall and Saurel [22], among others. Gonthier and Powers, for example, develop a
Godunov-type method for a two-phase flow model and use it to compute solutions to a number of reactive
flow problems. Their model equations, however, omit the non-conservative nozzling terms as a modeling
choice. As a result, their scheme handles a conservative system with non-differential source terms and thus
may be regarded as a straightforward extension of Godunov�s method for the Euler equations. The work by
Saurel and co-workers considers two-phase models with non-conservative terms. In [18,19], for example,
they introduce discrete approximations for the nozzling terms according to a ‘‘free-streaming’’ condition.
The basic idea, which is a generalization of the condition given by Abgrall [23], is that a numerical approx-
imation of a two-phase flow with uniform velocity and pressure should maintain uniform velocity and pres-
sure for all time. The high-resolution scheme developed here, based either on the solution of the Riemann
problem or an approximation thereof, satisfies this free-streaming condition naturally. It is also shown that
the present method provides better agreement near the solid contact layer than methods based on the free-
streaming conditions for several test problems.

The remaining sections of the paper are organized as follows. We introduce the model and briefly de-
scribe its characteristic framework in Section 2. The Riemann problem is discussed in Section 3. There
we describe a thin-layer analysis of the model equations which applies near the solid contact, and describe
a two-stage iterative procedure that may be used to obtain exact solutions of the Riemann problem. We
consider problems in which the left and right states of the flow consist of a mixture of the phases, as well
as problems in which one of the phases vanishes in one of the initial states. Our basic first-order Godunov
method is described in Section 4, followed by a discussion of an adaptive Riemann solver in Section 5. A
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high-resolution, second-order extension of the basic Godunov method is presented in Section 6, and numer-
ical results for both the first-order and second-order methods are given in Section 7. There we compute
numerical solutions of Riemann problems for both the mixture and vanishing phase cases, and we compare
solutions given by the present Godunov method with numerical methods suggested by the work in [18,19].
Concluding remarks are made in Section 8.
2. The Governing equations

Assuming one-dimensional flow, the governing equations of the two-phase model, without exchange
terms, may be written in the form
ut þ fxðuÞ ¼ hðuÞ�ax; ð1Þ

where
u ¼

�a

�a�q

�a�q�v

�a�q�E

aq

aqv

aqE

2666666666664

3777777777775
; fðuÞ ¼

0

�a�q�v

�að�q�v2 þ �pÞ
�a�vð�q�E þ �pÞ

aqv

aðqv2 þ pÞ
avðqE þ pÞ

2666666666664

3777777777775
; hðuÞ ¼

��v
0

þp

þp�v

0

�p

�p�v

2666666666664

3777777777775
.

Here, a, q, v and p denote the volume fraction, density, velocity and pressure of the gas phase, respectively,
and �a; �q; �v and �p denote the analogous quantities of the solid phase. (The bar superscript will be used
throughout the paper to indicate solid phase quantities.) The total energies are given by
E ¼ eþ 1

2
v2; �E ¼ �eþ 1

2
�v2;
where e = e(q,p) and �e ¼ �eð�q; �pÞ are internal energies of the gas and solid, respectively, assuming some
equations of state. Finally, the volume fractions satisfy the saturation constraint,
aþ �a ¼ 1;
which closes the system of equations.
The governing equations in (1) involve both conservative and non-conservative terms. The conservative

terms are included in the flux f(u), which is similar to the flux terms in the Euler equations for a single-phase
flow. The non-conservative terms appear on the right-hand side of (1). These terms appeared in Baer and
Nunziato�s original derivation and additional arguments justifying their presence were given in [12]. They
are often referred to as nozzling terms, as noted previously, since they are similar to the terms that appear in
the one-dimensional (hydraulic) formulation of flow in a channel with variable cross-sectional area. Here,
the volume fraction of the solid plays the role of the area A(x) of the channel. If �ax > 0, then the flow of the
gas sees a converging channel, whereas if �ax < 0, then the channel diverges.

The governing equations are hyperbolic, but not strictly hyperbolic as discussed in [10]. The seven real
eigenvalues are
k1 ¼ �v� �a; k2 ¼ k3 ¼ �v; k4 ¼ �vþ �a; k5 ¼ v� a; k6 ¼ v; k7 ¼ vþ a;
where a and �a are the sound speeds for the gas and solid, respectively. The C� and C+ characteristics for
each phase given by (k1,k5) and (k4,k7), respectively, are genuinely nonlinear, while the characteristics given
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by (k2,k3,k6) which represent particle paths of the solid and gas phases are linearly degenerate. The eigen-
vectors associated with these seven eigenvalues are linearly independent provided that
Fig. 1.
the sym
�a 6¼ 0; a 6¼ 0; ðv� �vÞ2 6¼ a2.
The first two conditions are met if the flow is a mixture of both phases, while the last condition is met if the
C± characteristics of the gas do not coincide with the particle paths of the solid. Following [10], we shall
refer to the latter constraint as the sonic condition, as it corresponds to choked flow in a one-dimensional
channel. Violating the sonic condition leads to a parabolic degeneracy as discussed in [10,15]. High drag
between the phases in the granular-explosives context makes the ‘‘subsonic’’ case,
ðv� �vÞ2 < a2; ð2Þ

more relevant. We consider this case in detail in our analysis and numerical method, but provide a brief
description of the supersonic case for completeness. We usually assume a mixture so that �a 6¼ 0 and
a 6¼ 0, but special cases in which one of the phases vanishes in the flow will also be treated.
3. The Riemann problem

The Riemann problem for the two-phase model is
ut þ fxðuÞ ¼ hðuÞ�ax; jxj < 1; t > 0; ð3Þ

with initial conditions
uðx; 0Þ ¼
uL if x < 0;

uR if x > 0;

�

where uL and uR are given left and right states of the flow. The general structure of the solution, as discussed
in [15], consists of shocks and/or rarefactions in the C± characteristic fields, and contact discontinuities
along particle paths. For example, the solution shown in Fig. 1 has shocks in the C� characteristic field
of the gas phase and the C+ characteristic field of solid phase, and has rarefactions in the C� characteristic
field of the solid phase and the C+ characteristic field of the gas phase. The volume fractions of the solid and
gas remain constant to the left and right of the contact discontinuity in the solid phase as indicated in the
figure. In these regions of constant �a, the governing equations reduce to Euler equations for the solid and
gas phase variables separately. The coupling between phases, and where the nozzling terms play a role, is
confined to a vanishing thin region about the solid contact, which we discuss in Section 3.1.
t

x

uL uR

αL αR
−−

R
−

− S
−
+C

−
CS − R+

A representative solution of the Riemann problem consisting of shocks, rarefactions and contact discontinuities indicated by
bols S, R and C, respectively. (Bar superscripts refer to solid phase quantities.)
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Fig. 2. Intermediate states of the (a) solid and (b) gas phases for a subsonic solid contact.
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The intermediate states of the solid and gas phases are indicated in Figs. 2(a) and (b), respectively. For
the solid phase, we denote the states to the left and right of the solid contact with subscripts 1 and 2, respec-
tively. A similar notation is used for the intermediate states of the gas, but with an additional intermediate
state appearing between the solid and gas contacts. This additional state is given subscript 0, and we note
that v0 = v2 and p0 = p2 for the configuration shown since the velocity and pressure are continuous across
the gas contact (where a and �a are constant and the contact behaves as a usual contact discontinuity for the
Euler equations).

Even though the solution structure of the solid phase (as shown in Fig. 2(a)) is similar to that of the usual
Euler equations, it is important to note that the intermediate states of the solid are coupled to those of the
gas in accordance with the solid contact jump conditions as discussed below. Thus, the solution for the solid
phase cannot be determined independently of the gas phase in general.

For the present discussion, we assume that neither phase vanishes in the flow and that the subsonic con-
dition in (2) is met. The latter condition implies that the solid contact lies between the shocks/rarefactions
of the gas as is the case shown in Fig. 2(b). The gas contact, on the other hand, may lie to the left or to the
right of the solid contact, or it may lie on either side of the shocks/rarefactions of the solid. Fig. 2(b) shows
the solid contact to the left of the gas contact. If the positions are reversed, then v0 = v1 and p0 = p1 accord-
ing to the continuity of velocity and pressure across the gas contact as mentioned above.

On either side of the solid contact where �a is constant, the equations reduce to a pair of Euler equations
for each phase separately. Accordingly, the jump conditions across shocks and rarefactions are the same as
those for the Euler equations with the chosen equation of state. Following the discussion in [24], we choose
to parameterize the states across shocks/rarefactions with pressure, and set
v1 ¼ vL � F Lðp1Þ; q1 ¼ GLðp1Þ; �v1 ¼ �vL � �F Lð�p1Þ; �q1 ¼ �GLð�p1Þ; ð4Þ

in region 1, and
v2 ¼ vR þ F Rðp2Þ; q2 ¼ GRðp2Þ; �v2 ¼ �vR þ �F Rð�p2Þ; �q2 ¼ �GRð�p2Þ; ð5Þ

in region 2. For an ideal gas with polytropic exponent c, the functions Fs(p) and Gs(p), s = L or R, are given
by
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F sðpÞ ¼
ðp � psÞ As

pþBs

h i1=2
if p > ps ðshockÞ;

2as
ðc�1Þ

p
ps

� �ðc�1Þ=2c
� 1

� �
if p < ps ðrarefactionÞ;

8>><>>: ð6Þ
and
GsðpÞ ¼
qs

ðc�1Þpsþðcþ1Þp
ðc�1Þpþðcþ1Þps

h i
if p > ps ðshockÞ;

qs
p
ps

� �1=c
if p < ps ðrarefactionÞ;

8><>: ð7Þ
where
As ¼
2

ðcþ 1Þqs
; Bs ¼

ðc� 1Þ
ðcþ 1Þ ps; as ¼

ffiffiffiffiffiffi
cps
qs

r
. ð8Þ
For the solid, we assume a stiffened gas equation of state with polytropic exponent �c and constant stiffening
pressure �p0. For this choice, �F sð�pÞ and �Gsð�pÞ, s = L or R, become
�F sð�pÞ ¼
ð�p � �psÞ As

�pþ�p0þ�Bs

h i1=2
if �p > �ps ðshockÞ;

2�as
ð�c�1Þ

�pþ�p0
�psþ�p0

� �ð�c�1Þ=2�c
� 1

� �
if �p < �ps ðrarefactionÞ;

8>><>>: ð9Þ
and
�Gsð�pÞ ¼
�qs

ð�c�1Þð�psþ�p0Þþð�cþ1Þð�pþ�p0Þ
ð�c�1Þð�pþ�p0Þþð�cþ1Þð�psþ�p0Þ

h i
if �p > �ps ðshockÞ;

�qs
�pþ�p0
�psþ�p0

� �1=�c
if �p < �ps ðrarefactionÞ;

8><>: ð10Þ
where
As ¼
2

ð�cþ 1Þ�qs
; Bs ¼

ð�c� 1Þ
ð�cþ 1Þ ð�ps þ �p0Þ; �as ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð�ps þ �p0Þ

�qs

s
. ð11Þ
Similar expressions to those in (6), (7), (9) and (10) may be derived for other equations of state, but the
choice of equation of state is not significant for the analysis of the Riemann problem or for the development
of the numerical method that follows, and so the functions above are sufficient for the purposes of this
paper.

The state of the flow in regions 1 and 2 is determined completely by the pressures (p1,p2) of the gas and
ð�p1; �p2Þ of the solid. These pressures also determine whether the transitions are shocks or rarefactions, and
they specify the positions of these waves. The density q0 of the gas in region 0 is the remaining unknown.
The jump conditions across the solid contact provide the necessary equations to determine these five quan-
tities. An analysis of the solid contact which results in the jump conditions is discussed next, and a method
of iteration to solve the equations is presented in Section 3.2.
3.1. Solid contact

We now consider the governing equations in the vicinity of the solid contact. It is here that the nozzling
terms play a role and the phases couple in the solution of the Riemann problem. Since the nozzling terms
are not conservative, an analysis based upon an integral conservation does not apply here and we turn



D.W. Schwendeman et al. / Journal of Computational Physics 212 (2006) 490–526 497
instead to a thin-layer analysis similar to that described in [6]. For this analysis, we require two rather mild
assumptions, namely, that the layer is vanishingly thin, and that the solution through the layer is smooth.
Accordingly, we consider traveling wave solutions of the governing equations in terms of the independent
variable n = x � Ut, which measures scaled distance across the layer traveling with a constant velocity U. In
terms of the variable n, the model equations become
�Uun þ fnðuÞ ¼ hðuÞ�an. ð12Þ
The first component of (12) reads
�U�an ¼ ��v�an;
which implies that �an ¼ 0 or U ¼ �v. The former case implies �a ¼ constant across the layer and leads to a
decoupling of the equations for the gas and solid as noted previously. Here, we concentrate on the latter
case which leads to jump conditions across the solid contact.

With U ¼ �v, the three equations in (12) for the solid become
� �vð�a�qÞn þ ð�a�q�vÞn ¼ 0;

� �vð�a�q�vÞn þ ð�a�q�v2 þ �a�pÞn ¼ p�an;

� �vð�a�q�EÞn þ ð�a�v�q�E þ �a�v�pÞn ¼ p�v�an.
The first of these three equations is satisfied identically, while the second and third equations both give
ð�a�pÞn ¼ p�an. ð13Þ
The three remaining equations in (12) for the gas are
� �vðaqÞn þ ðaqvÞn ¼ 0; ð14Þ
� �vðaqvÞn þ ðaqv2 þ apÞn ¼ �p�an; ð15Þ
� �vðaqEÞn þ ðavqE þ avpÞn ¼ �p�v�an. ð16Þ
A straightforward manipulation of (13)–(16) leads to a set of jump conditions involving a balance of mass,
momentum, enthalpy and entropy across the layer. An equation for the mass flux of the gas across the layer
follows immediately from (14), and takes the form
aqðv� �vÞ ¼ K1; ð17Þ

where K1 is a constant of integration. An equation for momentum may be obtained from (13)–(15), and is
given by
aqðv� �vÞ2 þ ap þ �a�p ¼ K2; ð18Þ

where K2 is another constant of integration. Next, we may use (14)–(16) to obtain
aqðv� �vÞ hþ 1

2
ðv� �vÞ2

� �
n

¼ 0; ð19Þ
where h(q,p) = e + p/q is the enthalpy of the gas. If the mass flux across the layer is not zero, then (19)
reduces to
hþ 1

2
ðv� �vÞ2 ¼ K3; ð20Þ
where K3 is a constant. The final jump condition involves the entropy of the gas. Upon manipulation of the
original four independent layer equations, we find



498 D.W. Schwendeman et al. / Journal of Computational Physics 212 (2006) 490–526
�aqðv� �vÞ en þ p
1

q

� �
n

" #
¼ 0;
or
�aqðv� �vÞSn ¼ 0; ð21Þ

using the thermodynamic identity de + p d(1/q) = T dS, where S(q,p) is the entropy of the gas. As before, if
the mass flux across the layer is not zero, then we have S = K4 = constant which provides the last jump
condition from the four independent layer equations. These four jump conditions, along with the constraint
that �v ¼ constant across the layer, are the same as those used in [15] following the work in [10], and they
provide enough equations to complete the solution of the Riemann problem as we discuss below. The layer
equations also provide a useful guide to the numerical treatment of the non-conservative terms in our
Godunov method as we discuss in Section 4.

3.2. Iterative solution

For the solution configuration of Fig. 2, the jump conditions at the solid contact imply the equations
�v1 ¼ �v2;

aLq1ðv1 � �v1Þ ¼ aRq0 v2 � �v2ð Þ;
�aL�p1 þ aLp1 þ aLq1ðv1 � �v1Þ2 ¼ �aR�p2 þ aRp2 þ aRq0 v2 � �v2ð Þ2;

cp1
ðc� 1Þq1

þ 1

2
ðv1 � �v1Þ2 ¼

cp2
ðc� 1Þq0

þ 1

2
v2 � �v2ð Þ2;

p1
qc
1

¼ p2
qc
0

;

assuming an ideal gas. Recalling the relations in (4) and (5), we may regard these jump conditions as five
equations for the unknowns ðq0; p1; p2; �p1; �p2Þ, or, preferably, we may eliminate q0 from the equations using
the entropy equation, and then view the remaining four equations as a system of nonlinear algebraic equa-
tions for the four pressures. These equations have the vector form
Nðp1; p2; �p1; �p2Þ ¼ 0; ð22Þ
where the four components of N may be taken as
N 1 ¼ �v2 � �v1;

N 2 ¼ aR
p2
p1

� �1=c

v2 � �v2ð Þ � aLðv1 � �v1Þ;

N 3 ¼ �aR�p2 þ aRp2 � �aL�p1 � aLp1 þ aLq1 v1 � �v1ð Þðv2 � v1Þ;

N 4 ¼
cp2

ðc� 1Þq1

p1
p2

� �1=c

þ 1

2
v2 � �v2ð Þ2 � cp1

ðc� 1Þq1

� 1

2
ðv1 � �v1Þ2.

ð23Þ
The nonlinear algebraic system (22) with components (23) may be solved iteratively for given left and right
states using Newton�s method. The iteration requires starting values ðpð0Þ1 ; pð0Þ2 ; �pð0Þ1 ; �pð0Þ2 Þ for the pressures of
the intermediate states. We use
pð0Þ1 ¼ pð0Þ2 ¼ p�; �pð0Þ1 ¼ �pð0Þ2 ¼ �p�;
where p*, �p� are defined implicitly by the equations
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v� ¼ vL � F Lðp�Þ ¼ vR þ F Rðp�Þ; �v� ¼ �vL � �F Lð�p�Þ ¼ �vR þ �F Rð�p�Þ; ð24Þ

respectively. These ‘‘star’’ values correspond to the velocities and pressures for the gas and solid in the inter-
mediate states assuming a decoupled flow in which �a ¼ constant. Thus, this choice of starting values for
Newton�s method is particularly relevant for the case when the difference between �aR and �aL is small, which
often occurs if the left and right states are given by neighboring grid cells in a Godunov-type scheme (see
Section 4). However, our numerical experiments have shown that this choice is suitable even when the dif-
ference in the volume fractions is not small as we show in a representative Riemann problem below.

Our iterative scheme proceeds in two stages. The first stage involves two independent Newton iterations
to obtain p* and �p� approximately. These iterations are equivalent to finding the solutions of the Riemann
problem for the Euler equations for each phase separately (see [24] for a detailed discussion of this itera-
tion). The second stage involves a Newton iteration to solve the solid contact jump conditions for the cou-
pled problem assuming �aL 6¼ �aR. If v� > �v� as determined by the solution of the first stage, then we initially
assume the configuration shown in Fig. 2 for the second stage and solve (22) with components given by (23)
for the intermediate pressures ðp1; p2; �p1; �p2Þ. If, on the other hand, v� < �v�, then we first assume that the gas
contact lies to the left of the solid contact and consider the iterative solution of (22) but with components
N 1 ¼ �v2 � �v1;

N 2 ¼ aR v2 � �v2ð Þ � aL
p1
p2

� �1=c

ðv1 � �v1Þ;

N 3 ¼ �aR�p2 þ aRp2 � �aL�p1 � aLp1 þ aRq2 v2 � �v2ð Þðv2 � v1Þ;

N 4 ¼
cp2

ðc� 1Þq2

þ 1

2
v2 � �v2ð Þ2 � cp1

ðc� 1Þq2

p2
p1

� �1=c

� 1

2
ðv1 � �v1Þ2;

ð25Þ
suitable for this solution configuration. During the subsequent steps of the Newton iteration the sign of
v1 � �v1 is checked to determine which set of equations is appropriate.

As an example, consider the Riemann problem with left and right states given in Table 1. In this exam-
ple, the initial two-phase mixture is at rest with a decrease in the volume fraction of the solid at x = 0 ini-
tially from �aL ¼ 0:8 to �aR ¼ 0:3. The solid density and pressure are equal on either side of x = 0 at t = 0.
The gas pressure is high on the right which drives a shock wave in the gas towards the left with x/t = �1.982
and a rarefaction towards the right for 1.044 6 x/t 6 1.183. The response of the solid is a shock wave mov-
ing to the right with x/t = 1.225 and a rarefaction moving to left for �1.183 6 x/t 6 �1.101. The interme-
diate states of the flow are computed using our iterative procedure and are included in Table 1. An x–t
diagram for each phase and the solution at t = 0.2 is shown in Fig. 3.

The solution of the Riemann problem shown in Fig. 3 involves one of many possible combinations of
shocks and/or rarefactions in the solid and gas phases. Our two-stage iterative procedure makes no initial
assumption of the solution structure, but rather determines it as part of the process. The only essential
1
d right states and the computed intermediate states for a sample Riemann problem with c ¼ �c ¼ 1:4 and �p0 ¼ 0

Region L Region 1 Region 0 Region 2 Region R

0.8 0.8 0.8 0.3 0.3
1.0 0.9436 0.9436 1.0591 1.0
0.0 0.0684 0.0684 0.0684 0.0
1.0 0.9219 0.9219 1.0837 1.0
0.2 0.3266 0.6980 0.9058 1.0
0.0 �0.7683 �0.7683 �0.1159 0.0
0.3 0.6045 0.6045 0.8707 1.0
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Fig. 3. Solution of the Riemann problem for the left and right states given in Table 1. The solid variables appear in the plots on the left
and the gas variables appear on the right.
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restriction is that the sonic condition is met. Assuming that the sonic condition is satisfied, it can be shown
(see Section 5.2) that the solution of the solid contact jump conditions, and thus the solution of the Rie-
mann problem, is unique for flows in which j�aR � �aLj is sufficiently small. This branch of solutions may
be followed for Riemann problems in which j�aR � �aLj increases (holding the other quantities in the left
and right states fixed) until j�aR � �aLj ¼ 1 or until the sonic condition is violated at which point solutions
cease to exist according to the analysis given in [15]. Thus, for a given left and right states, we regard
the unique solution of the Riemann problem to be the one that satisfies the solid contact jump conditions
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(along the branch of solutions described) and satisfies the usual (entropy-satisfying) jump conditions at
shocks, rarefactions and the gas contact discontinuity away from the solid contact.

3.3. Vanishing phase cases

An exact solution of the Riemann problem may be constructed for the special cases in which the solid or
the gas phase vanishes in one of the initial states. For these cases, the solid contact separates the mixture
from the single phase region. Thus, we need to revisit the thin-layer equations for the solid contact for the
vanishing phase cases to sort out the appropriate structure of the solution and the corresponding jump
conditions required to determine it.

For example, consider the case in which 0 < �aL < 1 and �aR ¼ 0 as shown in Fig. 4 so that the left state is
a mixture while the right state consists of only the gas phase. Here, we need only specify the solid primitive
variables ð�qL;�vL; �pLÞ in the left state, as shown in the figure, whereas we need to supply both the left and
right primitive states for the gas. The solution for the solid phase involves a shock or rarefaction in the C�
characteristic field (e.g., a rarefaction is shown) and an intermediate state with subscript 1 to the left of the
solid contact. The structure of the solution for the gas phase remains the same as that shown in Fig. 2(b),
although the contact discontinuity of the gas may lie on either side of the solid contact (and shocks may be
replaced by rarefactions and vice versa). If the contact discontinuity of the gas lies to the right of the solid
contact, then the jump conditions at the solid contact become
Fig. 4.
charac
aLq1ðv1 � �v1Þ ¼ q0ðv2 � �v1Þ;
�aL�p1 þ aLp1 þ aLq1ðv1 � �v1Þ2 ¼ p2 þ q0ðv2 � �v1Þ2;

cp1
ðc� 1Þq1

þ 1

2
ðv1 � �v1Þ2 ¼

cp2
ðc� 1Þq0

þ 1

2
ðv2 � �v1Þ2;

p1
qc
1

¼ p2
qc
0

.

These jump conditions determine the values for ðq0; p1; p2; �p1Þ, or simply ðp1; p2; �p1Þ if the entropy equation
is used to eliminate q0 as before.

We use a slight variation of the two-stage iterative procedure described earlier to solve the jump condi-
tions for ðp1; p2; �p1Þ. The first stage uses Newton�s method to compute p* and v* for the gas as before. We
then set �p� ¼ p� and �v� ¼ �vL � �F Lð�p�Þ for the solid, and apply Newton�s method to the three equations for
the jump conditions at the solid contact. These equations have the form
~Nðp1; p2; �p1Þ ¼ 0; ð26Þ
x

αL
αR
−−

R
−

− C
−

pL

vL

ρL
−

−
−

p1

v1

ρ1
−

−
−

=0<10<

A vanishing solid case in which the left state is a mixture while the right state consists of only the gas phase. (The C�
teristic field may be a rarefaction as shown or a shock.)
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with components
~N 1 ¼
p2
p1

� �1=c

ðv2 � �v1Þ � aLðv1 � �v1Þ;

~N 2 ¼ p2 � �aL�p1 � aLp1 þ aLq1ðv1 � �v1Þðv2 � v1Þ;

~N 3 ¼
cp2

ðc� 1Þq1

p1
p2

� �1=c

þ 1

2
ðv2 � �v1Þ2 �

cp1
ðc� 1Þq1

� 1

2
ðv1 � �v1Þ2;
if v� > �v�, or with components
~N 1 ¼ ðv2 � �v1Þ � aL
p1
p2

� �1=c

v1 � �v1ð Þ;

~N 2 ¼ p2 � �aL�p1 � aLp1 þ aRq2 v2 � �v1ð Þðv2 � v1Þ;

~N 3 ¼
cp2

ðc� 1Þq2

þ 1

2
ðv2 � �v1Þ2 �

cp1
ðc� 1Þq2

p2
p1

� �1=c

� 1

2
ðv1 � �v1Þ2;
otherwise. Similar equations apply if the left and right states are reversed so that the solid phase vanishes in
the left state.

Fig. 5 shows the solution of a Riemann problem representative of the case when the solid phase vanishes
in the right initial state. The values for the left and right states are given in Table 2 along with the computed
values for the intermediate states. For this example, the solution consists of a rarefaction in the C� char-
acteristic field of the solid phase for �2.739 6 x/t 6 �2.144 and a solid contact which moves with speed
x/t = 0.297. The solution for the gas phase consists of a shock for x/t = �2.058, a contact discontinuity
for x/t = �0.5824 and a rarefaction for 1.645 6 x/t 6 1.764.

The opposite situation occurs when the gas phase vanishes in the left or right states. For example, let us
consider the case when aL = 0 and 0 < aR < 1 so that there is no gas phase in the left state while the right
state is a mixture. Since the gas phase vanishes through the solid contact, it follows that the mass flux of gas
across the solid contact is zero. Accordingly, the contact discontinuity for the gas collapses upon that of the
solid and region 0 disappears as shown in Fig. 6. There is a shock or rarefaction in the C+ characteristic
field (e.g., a rarefaction is shown) and an intermediate state with subscript 2 to the right of the solid/gas
contact. The solution structure for the solid phase remains the same as that shown in Fig. 2(a). Thus,
the jump conditions at the solid contact reduce to
bNðp2; �p1; �p2Þ ¼ 0; ð27Þ
where
 bN 1 ¼ �v2 � �v1;bN 2 ¼ �v2 � v2;bN 3 ¼ �aR�p2 þ aRp2 � �p1;
which determine the pressures ðp2; �p1; �p2Þ. The jump conditions involving the enthalpy and entropy of the
gas do not apply since the mass flux of the gas across the solid contact is zero.

In order to solve (27), we first determine �p� and �v� using Newton�s method as described in Section 3.2,
and then determine p* iteratively from the equation �v� ¼ vR þ F Rðp�Þ. From here, we use pð0Þ2 ¼ p� and
�pð0Þ1 ¼ �pð0Þ2 ¼ �p� as starting values for a Newton iteration to solve (27). A representative solution is shown
in Fig. 7 for the left and right states given in Table 3. Here, we consider a mixture at rest in the right state
at t = 0 and a solid at rest in the left state. There is a large pressure difference between the left and right



Fig. 5. Solution of the Riemann problem for the left and right states given in Table 2. The solid variables appear in the plots on the left
and the gas variables appear on the right. The solid phase vanishes to the right of the solid contact.
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states of the solid phase initially which leads to a shock traveling to the right with speed x/t = 2.336 and a
rarefaction on the left for �2.739 6 x/t 6 �1.816. The solid contact moves to the right with speed
x/t = 0.461 which creates a compression in the gas and a shock with speed x/t = 1.752.

3.4. Supersonic case

We close our discussion of the exact solution of the Riemann problem by considering briefly the case in
which the relative gas velocity is supersonic through the solid contact. In this case, the solid contact lies to



Table 2
Left and right states and the computed intermediate states for a sample Riemann problem with c = 1.4, �c ¼ 3 and �p0 ¼ 0, and for
which the right state consists of only the gas phase

Region L Region 1 Region 0 Region 2 Region R

�a 0.5 0.5 0.5 0.0 0.0
�q 2.0 1.7829 1.7829 – –
�v 0.0 0.2972 0.2972 – –
�p 5.0 3.5422 3.5422 – –
q 1.0 1.3941 1.5341 1.7010 1.8
v 0.0 �0.5819 �0.5819 �0.0992 0.0
p 2.0 3.1978 3.1978 3.6956 4.0

x
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C=C
−

R+
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Fig. 6. A vanishing gas case in which the left state consists of only the solid phase while the right state is a mixture. (The C+

characteristic field may be a rarefaction as shown or a shock.)
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one side of all of the characteristic fields of the gas phase. For example, Fig. 8 shows the intermediate states
for the solid and gas for a supersonic case in which all of the characteristic fields of the gas lie to the right of
the solid contact. As before, the solid pressures �p1 and �p2 determine the density and velocity of the solid to
the left and right of the solid contact, respectively, so that in this case the jump conditions across the solid
contact may be regarded as equations for the states ð�p1; �p2; q0; v0; p0Þ. Once these equations are solved (using
Newton�s method for example), then the remaining intermediate states of the gas in regions 1 and 2 may be
found iteratively by considering (q0,v0,p0) and (qR,vR,pR) as left and right states for a Riemann problem
for the gas phase alone. A similar construction occurs when the characteristic fields of the gas lie to the left
of the solid contact.

For the reasons mentioned earlier, we are interested primarily in the subsonic case. The supersonic case
is described here for completeness, but we will not consider it further. However, it is worth noting that the
subsonic case considered previously and the supersonic case discussed here are the only admissible solutions
of the Riemann problem in which the solution in the solid contact layer is smooth according to the selection
criterion discussed in [15].
4. A Godunov method

We now turn our attention to a description of a Godunov method for the two-phase model. The method
requires solutions of the Riemann problem, which we have described in the previous section and now
consider to be known. The basic description of our numerical method follows the usual course (see, for



Fig. 7. Solution of the Riemann problem for the left and right states given in Table 3. The solid variables appear in the plots on the left
and the gas variables appear on the right. The gas phase vanishes to the left of the solid contact.
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example, the discussions in [25] or [24]) except for our numerical treatment of the non-conservative nozzling
terms which is new and will be the main focus of our attention. Essentially, the method combines the stan-
dard conservative Godunov flux with a non-conservative contribution arising from an integral of the noz-
zling terms over a grid cell. Both of these contributions are exact for a piecewise constant initial state (and
for a sufficiently small time step so that neighboring Riemann problems do not interact). The numerical
approximation lies in the piecewise constant interpolation of the solution at each time step, and as a result
the numerical method is first-order accurate, but may be extended to second-order accuracy (for smooth
regions of the flow) as we describe later in Section 6.



Table 3
Left and right states and the computed intermediate states for a sample Riemann problem with c = 1.4, �c ¼ 3 and �p0 ¼ 100, and for
which the left state consists of only the solid phase

Region L Region 1 Region 2 Region R

�a 1.0 1.0 0.6 0.6
�q 120.0 99.786 124.61 100.0
�v 0.0 0.4613 0.4613 0.0
�p 200.0 72.496 117.75 10.0
q – – 2.7146 2.0
v – – 0.4613 0.0
p – – 4.6166 3.0

x

αL

αR
−

−

R
−

− S
−

+C
−

pL

vL

ρL
−
−
−

p1

v1

ρ1
−
−
− p2

v2

ρ2
−
−
−

pR

vR

ρR
−
−
−

a

x

C
−

CS − R+

p0

v0

ρ0

p1

v1

ρ1

p2

v2

ρ2

pR

vR

ρR

b

αL

αR

pL

vL

ρL

Fig. 8. Intermediate states of the (a) solid and (b) gas phases for a supersonic solid contact.
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Let us begin by assuming a uniform grid, xj ¼ ðj� 1
2
ÞDx, j = 1,2, . . .,N, with mesh spacing Dx, and define

the cell average
Un
j ¼

1

Dx

Z xjþ1=2

xj�1=2

uðx; tnÞ dx.
An integral of (1) over a grid cell Xn
j ¼ ½xj�1=2; xjþ1=2� � ½tn; tnþ1� results in the exact formula
Unþ1
j ¼ Un

j �
Dt
Dx

Fn
jþ1=2 � Fn

j�1=2

� �
þ 1

Dx

Z Z
Xn
j

hðuÞ�ax dx dt; ð28Þ
where Dt = tn+1 � tn and
Fn
j�1=2 ¼

1

Dt

Z tnþ1

tn

f uðxj�1=2; tÞ
	 


dt. ð29Þ
If we assume a piecewise constant approximation for u(x, t) at t = tn, i.e.,
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uðx; tnÞ �

..

.

Un
j�1 if x 2 ½xj�3=2; xj�1=2Þ;

Un
j if x 2 ½xj�1=2; xjþ1=2Þ;

Un
jþ1 if x 2 ½xjþ1=2; xjþ3=2Þ;

..

.

8>>>>>>>><>>>>>>>>:

then we may evaluate the fluxes Fn

j�1=2 in (29) and the integral of the nozzling terms in (28) using the solu-
tion of the Riemann problem with initial states given by Un

j and the corresponding values in the neighboring
cells. For example, let u*(uL,uR) be the (constant) value of the self-similar solution of the Riemann problem
in (3) along the line x = 0 for t > 0, and set
Fn
j�1=2 ¼

1

Dt

Z tnþ1

tn

f u�ðUn
j�1;U

n
j Þ

� �
dt ¼ f u�ðUn

j�1;U
n
j Þ

� �

and
Fn
jþ1=2 ¼

1

Dt

Z tnþ1

tn

f u�ðUn
j ;U

n
jþ1Þ

� �
dt ¼ f u�ðUn

j ;U
n
jþ1Þ

� �
.

This part follows the usual description of the Godunov method and the function f(u*(uL,uR)) may be eval-
uated based on the construction of the solution of the Riemann problem.

It remains to evaluate the integral of the nozzling terms in (28). In view of the components of h(u), we
must examine the three integrals
I1 ¼
1

Dx

Z tnþ1

tn

Z xjþ1=2

xj�1=2

�v�ax dx dt; I2 ¼
1

Dx

Z tnþ1

tn

Z xjþ1=2

xj�1=2

p�ax dx dt;
and
I3 ¼
1

Dx

Z tnþ1

tn

Z xjþ1=2

xj�1=2

p�v�ax dx dt.
Each integration is carried out over the grid cell Xn
j as shown in Fig. 9. For example, suppose that the solid

contact from the Riemann problem centered at xj � 1/2 (labeled �Cj�1=2 in the figure) enters the cell from the
left with constant velocity �vnc;j�1=2 > 0. There are other waves associated with this Riemann problem (and
the Riemann problem centered at xj+1/2), but they are not essential to the evaluation of the integrals since
�a is constant across them. We suppose further that the solid contact from the Riemann problem centered at
xj+1/2 has a positive velocity so it is outside the grid cell of interest. In Xn

j , �aðx; tÞ equals �anj�1 to the left of a
Uj
n Uj+1

nUj−1
n

Uj
n+1

t

x

Fj−1/2
n Fj+1/2

n
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nt

n+1t
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n

Fig. 9. Grid cell Xn
j with solid contact Cj�1=2 from the Riemann problem at xj � 1/2.
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thin layer about �Cj�1=2 and it equals �anj to the right of the layer. Since �v ¼ constant ¼ �vnc;j�1=2 across the
layer, the scalar integrals reduce to
I1 ¼
Dt
Dx

�vnc;j�1=2ð�anj � �anj�1Þ; I2 ¼
Dt
Dx

Z nþ
j�1=2

n�j�1=2

p�an dn;
and
I3 ¼ �vnc;j�1=2I2;
where n = nj� 1/2 denotes the center of the thin layer about Cj�1=2. The final integral may be evaluated using
(13). We find
Z nþ

j�1=2

n�j�1=2

p�an dn ¼
Z nþ

j�1=2

n�j�1=2

ð�p�aÞn dn ¼ �pn2;j�1=2�a
n
j � �pn1;j�1=2�a

n
j�1;
where �pn1;j�1=2 and �pn2;j�1=2 are the solid pressures on either side of Cj�1=2 as determined by the solution of the
Riemann problem centered at xj � 1/2 (e.g., the pressures �p1 and �p2 in Fig. 2(a)). The integral of the nozzling
terms becomes path independent locally about each solid contact layer within the piecewise constant con-
struction of the Godunov method (and our thin-layer assumption).

The integral of the nozzling terms in (28) with components given by I1, I2 and I3 provides non-conser-
vative contributions to the standard Godunov flux fðu�ðUn

j�1;U
n
j ÞÞ depending on the sign of �vnc;j�1=2. We find

it convenient to define
HðUn
j�1;U

n
j Þ ¼

��vnc;j�1=2ð�anj � �anj�1Þ
0

þð�pn2;j�1=2�a
n
j � �pn1;j�1=2�a

n
j�1Þ

þ�vnc;j�1=2ð�pn2;j�1=2�a
n
j � �pn1;j�1=2�a

n
j�1Þ

0

�ð�pn2;j�1=2�a
n
j � �pn1;j�1=2�a

n
j�1Þ

��vnc;j�1=2ð�pn2;j�1=2�a
n
j � �pn1;j�1=2�a

n
j�1Þ

2666666666664

3777777777775
; ð30Þ
and then set
FLðUn
j�1;U

n
j Þ ¼

fðu�ðUn
j�1;U

n
j ÞÞ �HðUn

j�1;U
n
j Þ if �vnc;j�1=2 < 0;

fðu�ðUn
j�1;U

n
j ÞÞ if �vnc;j�1=2 > 0;

(
ð31Þ
and
FRðUn
j�1;U

n
j Þ ¼

fðu�ðUn
j�1;U

n
j ÞÞ if �vnc;j�1=2 < 0;

fðu�ðUn
j�1;U

n
j ÞÞ þHðUn

j�1;U
n
j Þ if �vnc;j�1=2 > 0.

(
ð32Þ
Here, FLðUn
j�1;U

n
j Þ is the combined numerical flux applied to cell Xn

j�1 to the left of xj � 1/2 while
FRðUn

j�1;U
n
j Þ is the combined numerical flux applied to cell Xn

j to the right. One of these two fluxes picks
up the contribution from the non-conservative terms depending on the direction of Cj�1=2 as determined
by the sign of �vnc;j�1=2.

We may now write our finite-volume Godunov scheme for the model equations. It takes the compact
form
Unþ1
j ¼ Un

j �
Dt
Dx

FLðUn
j ;U

n
jþ1Þ � FRðUn

j�1;U
n
j Þ

� �
; ð33Þ
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where the numerical flux functions FL and FR are given by (31) and (32), respectively. The evaluation of the
numerical flux functions relies on solutions of the Riemann problem. A procedure to obtain the full solu-
tion involves a two-stage iterative procedure as discussed previously. While this full solution is required for
accuracy for certain left and right states, an approximate solution requiring much less computational cost is
suitable in most cases. In Section 5, we describe an adaptive Riemann solver which handles both cases, and
is used to evaluate FL and FR accurately and efficiently.

Before leaving this section, we note the behavior of (33) corresponding to two special solutions of (1).
The first solution is the decoupled phase case when �a ¼ constant. Here, if �anj is constant for all j, then
the first components of both FL and FR vanish so that �anþ1

j ¼ �anj . Further, �p1 ¼ �p2 ¼ �p� when �aL ¼ �aR
(see Section 3.2) so that H = 0 and the fluxes FL and FR reduce to the standard Godunov fluxes for the
discrete solid phase and gas phase variables separately. A second special solution occurs when
p ¼ �p ¼ constant ¼ P and v ¼ �v ¼ constant ¼ V , the so-called free-streaming solution. In this solution,
�a, �a�q and aq each evolve according to linear advection equations with characteristic velocity equal to V.
For this case, if we consider pnj ¼ �pnj ¼ P and vnj ¼ �vnj ¼ V for all j (at some n), then all Riemann problems
would be solved with p ¼ �p ¼ P and v ¼ �v ¼ V for all states, and ð�a�; �q�; q�Þ equal to ð�aL; �qL; qLÞ if V > 0
and equal to ð�aR; �qR; qRÞ if V < 0. Assuming the case V > 0, for example, it is straightforward to show that
(33) reduces to pnþ1

j ¼ �pnþ1
j ¼ P and vnþ1

j ¼ �vnþ1
j ¼ V , and
�anþ1
j ¼ �anj � r �anj � �anj�1

� �
;

�anþ1
j �qnþ1

j ¼ �anj �q
n
j � r �anj �q

n
j � �anj�1�q

n
j�1

� �
;

anþ1
j qnþ1

j ¼ anjq
n
j � r anjq

n
j � anj�1q

n
j�1

� �
;

where r = VDt/Dx. Thus, uniform pressure and velocity is maintained exactly in the numerical approxima-
tion of the free-streaming solution and �anj , �a

n
j �q

n
j and anjq

n
j evolve according to first-order upwind methods as

expected.
5. An adaptive Riemann solver

The solution of the Riemann problem requires an iterative procedure (in general) and we have described
a two-stage process based on Newton�s method in Section 3.2. This solution provides the basis for our
Godunov method in (33), but it is usually desirable to consider approximate solutions in order to reduce
computational cost as mentioned previously. In this section, we discuss suitable approximations for both
stages of the iteration and a simple adaptive procedure which chooses whether the approximate solution
is sufficient or whether a full iterative solution is desirable. We begin in Section 5.1 with a brief description
of an approximation of the decoupled ‘‘star’’ states followed in Section 5.2 with a discussion of a linear
approximation of the jump conditions at the solid contact and a simple criterion which we use to determine
when the approximate solution is suitable.

5.1. Approximate star states

The first stage of the iterative process involves the solution of Riemann problems for the Euler equations
for each phase separately. Since the solution of these decoupled problems is needed only as an initial guess
for the Newton iteration in the second stage, an approximate solution is sufficient. There are many approx-
imate Riemann solvers for the Euler equations that may be used for this task, but it is convenient to use the
approximate-state Riemann solver suggested by Toro since it involves several formulas and constants used
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in the approximation of the second stage. We outline briefly the relevant formulas for completeness here, a
full description appears elsewhere (cf. [24, Chapter 9]).

Let us consider the Riemann problem for the Euler equations with left and right states given by
(qL,vL,pL) and (qR,vR,pR), respectively, either for the gas or solid variables. If the states are close to
one another, then a linearization is appropriate which results in the formula
p�;lin ¼
1

2
pL þ pRð Þ þ 1

8
ðqL þ qRÞðaL þ aRÞðvL � vRÞ. ð34Þ
In order to determine whether or not the linearization in (34) is suitable, Toro suggests the checks
pmax

pmin

< Quser and pmin < ~p�;lin < pmax; ð35Þ
where pmin = min{pL,pR}, pmax = max{pL,pR} and Quser is a user-defined parameter whose value is taken to
be 2. If both conditions in (35) are satisfied, then p*,lin is considered to be an accurate approximation for p*.
If either of the conditions is violated, then alternate approximations are used. For example, Toro suggests
the value
p�;tr ¼
aL þ aR � 1

2
ðc� 1ÞðvR � vLÞ

aLp
�ðc�1Þ=2c
L þ aRp

�ðc�1Þ=2c
R

" #2c=ðc�1Þ

ð36Þ
given by the two-rarefaction solution of the Riemann problem if p*,lin < pmin, and the value
p�;ts ¼
pL

AL

p�;linþBL

� �1=2

þ pR
AR

p�;linþBR

� �1=2

� vR þ vL

AL

p�;linþBL

� �1=2

þ AR

p�;linþBR

� �1=2
ð37Þ
given by an approximation of the two-shock solution if p*,lin P pmin. In the two-shock formula, As and Bs,
s = L or R, are given in (8) and p*,lin is given in (34).

An approximate value for p* is thus given by (34), (36) or (37) depending on the various conditions men-
tioned above. Using this value, we may compute the starred velocity using
v� ¼
1

2
ðvL þ vRÞ þ

1

2
F Rðp�Þ � F Lðp�Þð Þ. ð38Þ
Analogous formulas are used for the solid phase, but with p replaced by �p þ �p0 for all pressures in (34)–(37)
and with bar superscripts added to the remaining variables, which give approximate values for �p� and �v�.

If j�aR � �aLj is sufficiently small (less than 10�3 in our calculations), then we may stop here and use the
approximate values for ðp�; �p�Þ and ðv�;�v�Þ to obtain f(u*(uL,uR)) for the (decoupled) Godunov fluxes in
(33). If the difference is not approximately zero, then we must move on and consider an approximation
of the coupled problem as is discussed next.

5.2. Linearized solid contact

The coupling between phases in the Riemann problem occurs at the solid contact which requires the
solution of a set of nonlinear algebraic equations given by (22) for the case when both the left and right
states contain a mixture of the two phases. If the left and right states come from neighboring grid cells
in a numerical solution of a smooth flow, then the jump in the volume fraction between the states would
typically be small. Thus, it is reasonable to consider an approximation of the solid contact jump conditions
in the limit of small j�aR � �aLj and then use the resulting approximate values for the intermediate pressures
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ðp1; p2; �p1; �p2Þ as a means to obtain f(u*(uL,uR)). This exercise also provides useful information regarding
the solvability of the solid contact jump conditions in general.

When �aL ¼ �aR, a solution of (22) is given by
p1 ¼ p2 ¼ p�; �p1 ¼ �p2 ¼ �p�;
where p* and �p� are the exact star states defined by the pair of equations in (24). For j�aR � �aLj small, we seek
a solution to the jump conditions about an intermediate volume fraction �am, say, in the form
pk ¼ p� þ dk; �pk ¼ �p� þ �dk; k ¼ 1 and 2; ð39Þ
where dk and �dk are small perturbations to the starred pressures. We may pick �am to be the left or right value
of the volume fraction of the solid, or perhaps an average. For our calculations, we take �am to be �aL, �aR or
1
2
ð�aL þ �aRÞ whichever value is closest to 0.5. Substituting (39) into (22) gives
�F 0
Lð�p�Þ�d1 þ �F 0

Rð�p�Þ�d2 ¼ 0; ð40Þ

am F 0
Lðp�Þd1 þ F 0

Rðp�Þd2
	 


þ Dv�
cp�

ðd2 � d1Þ
� �

þ Dv�ðaR � aLÞ ¼ 0; ð41Þ

�am �d2 � �d1
	 


� Dp�ð�aR � �aLÞ ¼ 0; ð42Þ
q�Dv� F 0

Lðp�Þd1 þ F 0
Rðp�Þd2

	 

þ d2 � d1 ¼ 0; ð43Þ
to leading order. Here,
am ¼ 1� �am; Dv� ¼ v� � �v�; Dp� ¼ p� � �p�;
and
q� ¼
GLðp�Þ if v� > �v�;

GRðp�Þ if v� < �v�.

�
ð44Þ
Also,
F 0
sðp�Þ ¼

1� p��ps
2ðBsþp�Þ

� �
As

p�þBs

h i1=2
if p� > ps ðshockÞ;

1
qsas

p�
ps

� ��ðcþ1Þ=2c
if p� < ps ðrarefactionÞ;

8><>: ð45Þ
for s = L or R according to (6), and
�F 0
sð�p�Þ ¼

1� �p���ps
2ðBsþ�p�þ�p0Þ

� �
As

�p�þ�p0þBs

h i1=2
if �p� > �ps ðshockÞ;

1
�qs�as

�p�þ�p0
�psþ�p0

� ��ð�cþ1Þ=2�c
if �p� < �ps ðrarefactionÞ;

8><>: ð46Þ
according to (9).
We note that the four linear equations separate into a pair of equations for the solid pressure perturba-

tions ð�d1; �d2Þ and a pair of equations for the gas pressure perturbations (d1,d2). The pair, (40) and (42), for
the solid pressure perturbations is uniquely solvable if
�am 6¼ 0 and �F 0
Lð�p�Þ þ �F 0

Rð�p�Þ 6¼ 0.
The former is satisfied if the solid phase does not vanish and the latter is always satisfied since �F 0
s > 0, s = L

or R. Assuming a non-vanishing solid phase, a unique solution exists and is given by
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�d1 ¼
��F 0

Rð�p�ÞDp�
�F 0
Lð�p�Þ þ �F 0

Rð�p�Þ
�aR � �aL

�am

� �
;

�d2 ¼
�F 0
Lð�p�ÞDp�

�F 0
Lð�p�Þ þ �F 0

Rð�p�Þ
�aR � �aL

�am

� �
.

ð47Þ
Eqs. (41) and (43) determine the gas pressure perturbations. This pair of equations is uniquely solvable
if
am 6¼ 0 and cp� � q�Dv
2
�

	 

F 0

Lðp�Þ þ F 0
Rðp�Þ

	 

6¼ 0.
The first is satisfied if the gas phase is present in the flow, and the second is satisfied if
M2
� ¼

Dv2�
cp�=q�

6¼ 1;
which is true if the subsonic condition is met. Assuming these conditions are satisfied, the unique solution is
given by
d1 ¼
1þ q�Dv�F

0
Rðp�Þ

	 

Dv�

1�M2
�

	 

F 0

Lðp�Þ þ F 0
Rðp�Þ

	 
 aL � aR
am

� �
;

d2 ¼
1� q�Dv�F

0
Lðp�Þ

	 

Dv�

1�M2
�

	 

F 0

Lðp�Þ þ F 0
Rðp�Þ

	 
 aL � aR
am

� �
.

ð48Þ
The perturbations in the pressures given by (47) and (48) reflect a linearized coupling between the phases
and correspond to the corrections provided by the first step in the Newton iteration of the nonlinear equa-
tions for the solid contact. These formulas are derived based on an exact star state, but are used in practice
with the approximate star state given by (34), (36) or (37) for the pressures and by (38) for the velocities. We
may now check the size of the residual,
� ¼ kNðp� þ d1; p� þ d2; �p� þ �d1; �p� þ �d2Þk;
to determine whether more Newton steps are required. (We assume that the primitive variables of the
flow are dimensionless and properly scaled so that we need not scale the components of N for this
check.) If � < 10�3, then we accept the linearized values and use them to determine u*(uL,uR). We
also use these values to determine the velocity of the solid contact, �vc, and the solid pressures on either
side ð�p1; �p2Þ, which are needed in our numerical treatment of the nozzling terms in (30). If � is too big,
then we take more Newton steps to obtain more accurate values for ðp1; p2; �p1; �p2Þ, which requires a
higher computational cost. In our numerical experiments, we monitor the number of Newton steps
required and find that the linear approximation is sufficient for the majority of Riemann solutions
(see Section 7).

Finally, we note that in extreme cases, either when j�aR � �aLj is close to 1 or when one of the phases nearly
vanishes, the Newton iteration may not converge for the initial guess given by the decoupled star states. For
such cases, we employ a simple continuation procedure in either the left or right value for �a. For example,
suppose �aL is closest to 0.5. We fix this value and adjust �aR closer to �aL, while holding the other primitive
values in the left and right states fixed, until Newton�s method converges. Once convergence occurs, we then
slowly move �aR back to its original value during the Newton iteration. While this situation rarely occurs
(and if so requires only a tiny fraction of the overall computational cost of the method), we find it helpful
for a robust implementation of the method.
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6. A high-resolution method

The Godunov method described in Section 4 is first order accurate, and may be extended to second order
using slope-limited corrections of the left and right states in the Riemann problem. This approach to gen-
erate a high-resolution method is well established in the literature for the Euler equations, see [8,9] for
example, and has been used in other numerical schemes for compressible multi-phase flow, see [18,19]
for example. The description of the second-order extension here follows similar lines except for our treat-
ment of the non-conservative terms which is new. Essentially, the extension for the non-conservative terms
involves two parts, one coming from a contribution to the integral of hðuÞ�ax about the solid contact and the
other coming from the integral away from the jump at the solid contact. The latter contribution arises due
to the slope correction for �a as we describe below.

It is convenient to obtain the corrections in terms of the primitive variables w ¼ ð�a; �q;�v; �p; q; v; pÞT. This
may be done using the quasi-linear form of the model which takes the form
wt þ AðwÞwx ¼ 0;
where
AðwÞ ¼

�v 0 0 0 0 0 0

0 �v �q 0 0 0 0

� Dp
�a�q 0 �v 1

�q 0 0 0

0 0 �q�a2 �v 0 0 0

� qDv
a 0 0 0 v q 0

0 0 0 0 0 v 1
q

� qa2Dv
a 0 0 0 0 qa2 v

26666666666664

37777777777775
;

Dp ¼ p � �p;

Dv ¼ v� �v.
Let us consider the grid cell Xn
j defined earlier in Section 4 and let wn

j denote the primitive variables corre-
sponding to the cell average Un

j . First order approximations are needed at cell boundaries. For example, a
first order approximation for w at (xj+1/2,tn+1/2) is given by
wn
j;þ ¼ wn

j þ
Dx
2
ðwxÞnj þ

Dt
2
ðwtÞnj ¼ wn

j þ
1

2
I � Dt

Dx
An
j

� �
Dwn

j ; ð49Þ
where An
j ¼ Aðwn

j Þ and Dwn
j is a discrete approximation of ðwxÞnjDx. The slope correction in (49) is limited in

order to suppress numerical oscillations, and this is done in characteristic variables. Let
KðwÞ ¼ diagð�v;�v� �a;�v;�vþ �a; v� a; v; vþ aÞ

and
RðwÞ ¼

1 0 0 0 0 0 0

0 �q 1 �q 0 0 0

0 ��a 0 �a 0 0 0
Dp
�a �q�a2 0 �q�a2 0 0 0

� qDv2

aða2�Dv2Þ 0 0 0 q 1 q

a2Dv
aða2�Dv2Þ 0 0 0 �a 0 a

� qa2Dv2

aða2�Dv2Þ 0 0 0 qa2 0 qa2

266666666666664

377777777777775
;
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so that K and R solve AR = RK and the characteristic variables are z = R�1w. A slope-limited correction at
(xj+1/2,tn+1/2) is
wn
j;þ ¼ wn

j þ
1

2
Rn
j I � Dt

Dx
maxfKn

j ; 0g
� �

Dznj ; ð50Þ
where
Dznj ¼ minmod R�1ðwn
jþ1 � wn

j Þ;R�1ðwn
j � wn

j�1Þ
� �

. ð51Þ
Here, the maximum and minimum-modulus functions are performed componentwise. Similar steps give
wn
j;� ¼ wn

j �
1

2
Rn
j I þ Dt

Dx
minfKn

j ; 0g
� �

Dznj ; ð52Þ
which is a slope-limited correction at (xj� 1/2, tn+1/2). Finally, let U
n
j;� denote the conservative variables cor-

responding to wn
j;�.

The slope-limited corrections Un
j;� may now be used to extend (33) to second order. These values provide

corrections at cell boundaries which may then be used as left and right states for the Riemann problems.
They also provide a slope correction to the integral of the non-conservative terms. For example, consider
the Riemann problem about the boundary xj � 1/2 with left and right states given by Un

j�1;þ and Un
j;�, respec-

tively. The adaptive Riemann solver provides the necessary information to evaluate the numerical fluxes
FLðUn

j�1;þ;U
n
j;�Þ and FRðUn

j�1;þ;U
n
j;�Þ defined by (31) and (32), respectively. These fluxes contain the sec-

ond-order Godunov flux at the boundary of the cell, fðu�ðUn
j�1;þ;U

n
j;�ÞÞ, and the second-order contribution

to the integral of the non-conservative terms about the solid contact, HðUn
j�1;þ;U

n
j;�Þ.

It remains to determine the second-order contribution to the integral away from the solid contact. This
contribution arises in the second-order extension since �a involves a slope correction, and thus away from
the solid contact �ax 6¼ 0 in general. In order to specify this contribution, let us consider the solution of the
Riemann problem about the cell boundary xj � 1/2 and define the pairs ð�v‘;j�1=2; p‘;j�1=2Þ and ð�vr;j�1=2; pr;j�1=2Þ
as follows:
ð�v‘;j�1=2; p‘;j�1=2Þ ¼ ð�vnc;j�1=2; p
n
1;j�1=2Þ

ð�vr;j�1=2; pr;j�1=2Þ ¼ ð�v�j�1=2; p
�
j�1=2Þ

)
if �vnc;j�1=2 < 0;
and
uR=Uj,−uL=Uj−1,+
n

t

x

Cj−1/2

xj−1/2

−

n

pr, j−1/2

vr, j−1/2
−

pl, j−1/2

vl, j−1/2
−

b

uR=Uj,−uL=Uj−1,+
n

t

x

Cj−1/2

xj−1/2

−

n

pr, j−1/2

vr, j−1/2
−

pl, j−1/2

vl, j−1/2
−

a

Fig. 10. Values for ð�v‘;j�1=2; p‘;j�1=2Þ and ð�vr;j�1=2; pr;j�1=2Þ about xj � 1/2 for (a) �vnc;j�1=2 < 0 and (b) �vnc;j�1=2 > 0.
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ð�v‘;j�1=2; p‘;j�1=2Þ ¼ ð�v�j�1=2; p
�
j�1=2Þ

ð�vr;j�1=2; pr;j�1=2Þ ¼ ð�vnc;j�1=2; p
n
2;j�1=2Þ

)
if �vnc;j�1=2 > 0
(see Fig. 10). These velocities and pressures may now be used to approximate the integral of the non-
conservative terms away from the jump at the solid contact. For the grid cell Xn

j , the contribution to the
integral is given by
~H
n

j ¼

� 1
2
ð�vr;j�1=2 þ �v‘;jþ1=2ÞD�anj

0

þ 1
2
ðpr;j�1=2 þ p‘;jþ1=2ÞD�anj

þ 1
2
ðpr;j�1=2�vr;j�1=2 þ p‘;jþ1=2�v‘;jþ1=2ÞD�anj

0

� 1
2
ðpr;j�1=2 þ p‘;jþ1=2ÞD�anj

� 1
2
ðpr;j�1=2�vr;j�1=2 þ p‘;jþ1=2�v‘;jþ1=2ÞD�anj

26666666666664

37777777777775
; ð53Þ
where D�anj ¼ �anj;þ � �anj;�. This contribution applies only in smooth regions of the flow (due to the slope lim-
iting) so that the averages used in (53) are suitable.

We now have all of the ingredients for our second-order extension of (33). It has the form
Unþ1
j ¼ Un

j �
Dt
Dx

FLðUn
j;þ;U

n
jþ1;�Þ � FRðUn

j�1;þ;U
n
j;�Þ

� �
þ Dt
Dx

~H
n

j ; ð54Þ
where FL and FR are defined by (31) and (32), respectively, and ~H
n

j is given in (53). As with the first-order
method, we note that (54) reduces to a standard slope-limited extension of Godunov�s method for the Euler
equations for each phase separately when �anj is constant. Also, it can be shown that the pressure and veloc-
ity remain constant in the free-streaming case, and that �anj , �a

n
j �q

n
j and anjq

n
j evolve according to second-order

finite difference approximations of their respective linear advection equations (except near local extrema
where the approximations become first order due to the slope limiter).
7. Numerical results

In this section, we consider a variety of problems for the governing equations (1) in order to illustrate the
behavior and accuracy of our first order Godunov method (33) and its second-order extension (54). We
begin by illustrating numerical solutions of the Riemann problems described in Section 3. These problems
involve the case where both the left and right states consist of a mixture of the phases and cases where the
solid or gas phase vanishes in the left or right states. For the mixture case with left and right states given in
Table 1, we perform a careful check of the behavior of the numerical solution through the thin solid contact
layer. Next, we compute numerical solutions of the model equations for smooth initial conditions and then
use these solutions to perform a grid refinement study. This is done as a means to verify the order of accu-
racy of the methods. Finally, we compute solutions using two alternate numerical methods suggested by the
work in [18,19]. We then compare solutions obtained using these two alternate methods with that given by
(33). It is found that the present method gives more accurate results for the test problem used, which we
attribute to a more accurate numerical treatment of the non-conservative terms about the solid contact.

Fig. 11 shows numerical solutions and the exact solution at t = 0.2 for the Riemann problem with left
and right states given in Table 1. The short-dashed blue curve in each plot is obtained using the first-order
method while the long-dashed red curve is given by its second-order extension. Both of these numerical
solutions are computed using N = 200 grid cells and a Dt determined by
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Fig. 11. First-order (short-dashed blue curves) and second-order (long-dashed red curves) numerical solutions at t = 0.2 of the
Riemann problem with left and right states given in Table 1. The solid black curves indicate the exact solution. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Dt ¼ 0:8
Dx
kmax

; kmax ¼ max
16j6N

fj�vnj j þ �anj ; jvnj j þ anjg;
at each time step. The solid black curve shows the exact solution in each plot. Both numerical solutions are
in good agreement with the exact solution, and, as expected, the second-order solution shows less smearing
at shocks and contacts, and at the corners of the rarefactions. In particular, we note that both numerical
solutions are in good agreement with the exact solution near the solid contact.

The behavior of the numerical solutions near the gas contact, shocks and rarefactions is typical of first-
order and (slope-limited) second-order methods for the Euler equations which applies in regions of the flow
where j�anj � �anj�1j is approximately zero. Near the solid contact, on the other hand, where �anj varies, we may
compare the behavior of the numerical solutions with that determined by the jump conditions for the solid
contact layer (see Section 3.1). Fig. 12 shows the first-order and second-order solutions at t = 0.2 for �p, q, v
and p versus �a through the layer. The solid curve is given by layer equations
aqðv� �vÞ ¼ K1; aqðv� �vÞ2 þ ap þ �a�p ¼ K2;

cp
ðc� 1Þqþ 1

2
ðv� �vÞ2 ¼ K3;

p
qc

¼ K4; �aþ a ¼ 1;
ð55Þ
for �a between 0.3 and 0.8 using the exact state at �a ¼ 0:3 to determine the four constants, Ki, i = 1, . . ., 4.
The plots show that the numerical solutions agree very well with the solution of the thin layer equations,
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and this is a result of our numerical treatment of the integral of the non-conservative terms over each grid
cell, and in particular across the solid contact layer.

The adaptive Riemann solver described in Section 5 is used to perform the Godunov flux calculations for
both the first-order and second-order methods. The solver is designed to detect and handle both coupled
(�ax 6¼ 0) and decoupled (�ax ¼ 0) flows and take advantage of the computational savings in the flux calcula-
tion for decoupled (Euler) flows. In the coupled case, the adaptive solver first considers the linearized equa-
tions for the solid contact and checks whether a solution based on this simpler set of equations is sufficient.
If the solution is not sufficiently accurate, then additional Newton iterations are performed at an increased
computational cost. For example, the second-order solution shown in Figs. 11 and 12 required 24,120 flux
calculations. The majority of these flux calculations, approximately 97.6%, were regarded as decoupled. Of
the remaining 2.4%, 339 flux calculations were performed based on the linearized equations for the solid
contact, while only 246 flux calculations required further Newton iterations (with no continuation in �a).
These percentages are representative of numerical solutions in which the coupling between phases is con-
fined to a thin region of x and the jump in �a is moderate. For other calculations, such as the smooth solu-
tion considered later, the coupled flow region is broader, in which case the numerical fluxes may be
computed based on the decoupled equations or the linearized coupled equations alone.

As an added check of the numerical approach, we consider a case in which there is a large variation in
the values between the left and right states and between the solid and gas phases. Fig. 13 shows the exact
solution and numerical solutions for the Riemann problem with left and right states given by
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�aL ¼ 0:2; �qL ¼ 1900; �vL ¼ 0; �pL ¼ 10; qL ¼ 2; vL ¼ 0; pL ¼ 3;

�aR ¼ 0:9; �qR ¼ 1950; �vR ¼ 0; �pR ¼ 1000; qR ¼ 1; vR ¼ 0; pR ¼ 1.
ð56Þ
For this case, the equation of state for the gas is specified by c = 1.35, while �c ¼ 3 and �p0 ¼ 3400 are used in
the stiffened equation of state for the solid. The values for density and pressure are representative of the
ones used in [11–13] and in the recent paper by Powers [26], and the parameters for the equations of state
are representative of ones for granular explosives. The plots of �a, �q and q versus x show very good agree-
ment between the numerical solutions and the exact solution. The plot of the density of the gas, q, versus �a
through the solid contact layer shows very good agreement as well. Overall, the numerical scheme performs
very well for this case in view of the large variation in the values of the left and right states including the
large jump in the volume fraction of the mixture.

A solution in which the solid or gas phase vanishes may be handled numerically by computing a corre-
sponding approximate solution where the phase nearly vanishes. We may illustrate this by considering the
solutions of the two Riemann problems described in Section 3 in which the solid phase vanishes in one of
the solutions and the gas phase vanishes in the other. For example, Fig. 14 shows the first-order and sec-
ond-order numerical solutions at t = 0.15 of the Riemann problem with the left state given in Table 2 and a
right state given by
�aR ¼ 10�6; �qR ¼ 1:7829; �vR ¼ 0:2972; �pR ¼ 3:5422; qR ¼ 1:8; vR ¼ 0; pR ¼ 4. ð57Þ
A very small positive value for �aR is taken in the right state to maintain a mixture of the phases as
required by the numerical method and to approximate the exact solution where �aR ¼ 0. No values are
needed for �qR, �vR and �pR in the exact problem but some values are needed by the numerical method,
and the choice given above is taken from the exact solution for the solid phase in the constant state
to the left of the solid contact (Region 1 in Table 2). This choice is not essential but is made here for
convenience as it (approximately) eliminates the variation in �q, �v and �p through the solid contact in
the numerical solution and any shock or rarefaction in the C+ characteristic field to the right of the solid
contact. Other choices for �qR, �vR and �pR could be made, but this would have a negligible effect on the
numerical solution for the solid phase variables to the left of the solid contact and on the numerical solu-
tion for the gas phase variables on either side of the solid contact. In Fig. 14, the exact position of the
solid contact separating the mixture on the left from the gas on the right is marked by a dashed line.
Here, we note that the numerical solutions for the solid and gas phase variables agree well with the exact
solution on the mixture side of the solid contact, and the gas phase variables agree well to the right of the
solid contact. There are small errors in the solid phase variables to the right of the solid contact where
the volume fraction is approximately zero. These errors are generated in the first few time steps of the
numerical solutions due to the initial jump in the state, but are not considered significant since the vol-
ume fraction of the solid is approximately zero there.

An exact solution of the Riemann problem for a case in which the gas phase vanishes in left state is given
in Table 3. Numerical solutions for this case may be computed using the left state given by
�aL ¼ 1� 10�6; �qL ¼ 120; �vL ¼ 0; �pL ¼ 200; qL ¼ 2:7146; vL ¼ 0:4613; pL ¼ 4:6166;

ð58Þ

and the right state given in Table 3. Here, we choose the gas variables in the left state to be those given by
the exact solution to the right of the solid contact. As before, this choice is made for convenience but is not
essential. Fig. 15 shows the first-order and second-order numerical solutions at t = 0.15 for this case, and
again we note good agreement between the numerical solutions and the exact solution (apart from small
errors in the gas phase variables where �a is approximately one). In general, we find good agreement for
all of our numerical experiments with solutions of Riemann problems.
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Numerical solutions with smooth initial conditions may be computed using the first-order and second-
order methods and then used to verify the order of accuracy of the methods. This is done primarily as a
further check of our numerical approximation of the non-conservative terms. For example, we take
c ¼ �c ¼ 1:4 and �p0 ¼ 0, and consider the initial conditions
Table
Nume

N

100
200
400
800
�aðx; 0Þ ¼ 1

2
þ 2

5
tanhð20x� 8Þ; �vðx; 0Þ ¼ 1

2
þ 1

2
tanhð20x� 10Þ;
and
�qðx; 0Þ ¼ qðx; 0Þ ¼ 1; �pðx; 0Þ ¼ pðx; 0Þ ¼ 1; vðx; 0Þ ¼ 0.
For these initial conditions, �a has a smooth transition from 0.1 to 0.9 initially centered at x = 0.4, and the
solid velocity varies smoothly from 0 on the left to 1 on the right which creates an expansion in the flow
initially. The choice of the initial conditions is somewhat arbitrary for the purpose of our grid refinement
study, although it is desirable for �aðx; 0Þ to vary so that the phases are coupled and for the velocity and/or
pressure to vary so that the flow is not free-streaming. Unlike the Riemann problems, an exact solution is
not available for this problem, but it may be approximated with sufficient accuracy using the second-order
numerical method with a very large number of grid cells, e.g., 12,800 grid cells on x 2 [0,1] with numerical
boundary conditions Un

0 ¼ Un
1 and Un

N ¼ Un
N�1. Numerical solutions with N = 100, 200, 400 and 800 may be

computed using our first-order Godunov method (33) and its second-order extension (54) and compared
with the highly resolved numerical solution, unj , restricted to the coarser grids. Numerical errors and con-
vergence rates are computed at tn = 0.1 using
EN ¼
XN
j¼1

kUn
j � unjkDx; rN ¼ lnEN=2 � lnEN

ln 2
;

respectively, and are presented in Table 4. The convergence rates indicate that our Godunov method,
labeled G1 in the table, is indeed first-order accurate. The convergence rates given by (54), labeled G2,
are slightly smaller than 2 due to the minimum-modulus slope limiter and the presence of local extrema
in the solution where the method reduces to first order. If the minmod function in (51) is replaced by an
average, then second-order accuracy is achieved as indicated by the convergence rates in the last column
of the table. For this problem no shocks or contact discontinuities appear, but in general the slope-limited
method would be preferred in order to suppress numerical oscillations when these sharp features occur.

Finally, it is interesting to compare the present Godunov method with alternate methods available in the
literature. One such method, discussed in [18], employs an HLL approximate Riemann solver to determine
the conservative contribution to the numerical flux functions. The discretization of the non-conservative
terms, on the other hand, is guided by the condition that constant velocity and pressure is maintained
exactly in the numerical solution of free-streaming flow. Both first-order and second-order methods are de-
scribed in [18], but we will focus on the simpler first-order method for purposes of comparison. The first-
order method may be written in the form of (33), but with flux functions FL and FR given by
4
rical errors and convergence rates for the first-order, G1, and second-order, G2, methods

G1 G2 G2 (no limiter)

EN rN EN rN EN rN

1.05 · 10�2 1.12 · 10�4 3.56 · 10�4

5.31 · 10�3 0.98 3.14 · 10�4 1.83 9.75 · 10�5 1.87
2.75 · 10�3 0.95 9.16 · 10�5 1.78 1.71 · 10�5 1.92
1.38 · 10�3 1.00 2.72 · 10�5 1.75 6.61 · 10�6 1.97
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FLðUn
j�1;U

n
j Þ ¼ FHLLðUn

j�1;U
n
j Þ � hðUn

j�1Þ
kþ�anj�1 � k��anj

kþ � k�

� �

and
FRðUn
j�1;U

n
j Þ ¼ FHLLðUn

j�1;U
n
j Þ � hðUn

j Þ
kþ�anj�1 � k��anj

kþ � k�

� �
;

where
FHLLðUn
j�1;U

n
j Þ ¼

kþfðUn
j�1Þ � k�fðUn

j Þ þ kþk�ðUn
j �Un

j�1Þ
kþ � k�
has the form of the usual HLL flux function [27] with approximate wave speeds taken to be
kþ ¼ max
k¼j�1;j

f0;�vnk þ �ank ; v
n
k þ ankg; k� ¼ min

k¼j�1;j
f0;�vnk � �ank ; v

n
k � ankg.
We shall refer to this method as GHLL. Another method, described by Andrianov et al. [19], determines the
conservative contribution to the numerical fluxes based on the exact solution of a linearized Riemann prob-
lem. The discretization of the non-conservative terms is guided again by a condition based on preserving
free-streaming flow. A version of this method takes the form of (33), and uses flux functions
FLðUn
j�1;U

n
j Þ ¼

fðu�ðUn
j�1;U

n
j ÞÞ � hðUn

j�1Þ�anj if �vnc;j�1=2 < 0;

fðu�ðUn
j�1;U

n
j ÞÞ � hðUn

j�1Þ�anj�1 if �vnc;j�1=2 > 0;

(

and
FRðUn
j�1;U

n
j Þ ¼

fðu�ðUn
j�1;U

n
j ÞÞ � hðUn

j Þ�anj if �vnc;j�1=2 < 0;

fðu�ðUn
j�1;U

n
j ÞÞ � hðUn

j Þ�anj�1 if �vnc;j�1=2 > 0.

(

Here, we have replaced a linearized Godunov flux with the exact one given by fðu�ðUn

j�1;U
n
j ÞÞ, but the

numerical approximation of the non-conservative terms follows that described in [19]. This latter method
will be referred to as GASW.

Fig. 16 provides a comparison of the numerical solutions given by the first-order methods GHLL, GASW

and G1 of the Riemann problem with left and right states given in Table 1. Fig. 16(a) shows the behavior of
�a versus x at t = 0.2. Here, we note that both GASW and G1 resolve the solid contact with minimal numerical
dissipation while there is significantly more smearing seen in the solution given by GHLL. A closer look at
the behavior in the solid contact layer is shown, for example, in the plot �p versus �a given in Fig. 16(b). In
this plot, we see that the numerical solutions given by GHLL and GASW differ from that given by the layer
equations in (55). This is due to the numerical approximation of the non-conservative terms, which is
guided by a free-streaming condition for both of these methods. While this condition is effective in many
cases, it ignores the details of the layer and thus suffers from a loss of accuracy in others. The present method,
G1, on the other hand, is in better agreement with the layer solution. The effect of the disagreement through
the solid contact layer may be seen in Figs. 16(c) and (d) where we plot numerical solutions for �q and q,
respectively, versus x. Aside from the significant smearing in the solution given by GHLL, we note an error
in the states on both sides of the solid contact as determined by GHLL and GASW. The example shown in
Fig. 16 provides an indication of the effect of the solid contact layer on the numerical solution, and the accu-
racy of the numerical approach presented in this paper. In general, we find that the present numerical ap-
proach shows similar accuracy in the layer for any solution configuration, and for cases with a large
jump in the volume fraction through the layer it gives equal or better accuracy than the solutions given
by GHLL or GASW for all test cases we have considered.
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8. Conclusions

We have considered the structure of the Riemann problem for the Baer and Nunziato equations mod-
eling compressible two-phase flow (without exchange source terms). The solution consists of shocks, rar-
efactions and contact discontinuities in the various characteristic fields of the separate phases with the
coupling between phases being confined to a (infinitesimally) thin region about the solid contact. In this
thin region, the non-conservative terms in the governing equations contribute and are handled by assuming
a quasi-steady thin layer approximation. An analysis of this thin layer results in nonlinear equations that
determine the jump in the state across the solid contact. These jump conditions agree with those obtained
by Embid and Baer [10] using generalized Riemann invariants. A two-stage iterative procedure has been
described to solve the Riemann problem for given left and right states of the flow. This procedure makes
no initial assumption regarding the wave structure of the flow, but rather computes it as part of the iterative
solution procedure. The iterative procedure was used to compute solutions for a representative case in
which the left and right states consist of a mixture of the phases, and for special cases in which one of
the phases vanishes in the left or right states.

The exact solution for the Riemann problem was used to develop a Godunov method for the model
equations. Here, we considered an integration of the governing equations over a grid cell and used the exact
solution of the Riemann problem to evaluate both the integral of the conservative fluxes and the integral of
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the non-conservative terms. The latter integration reduced to a contribution across the solid contact that
forms from each cell boundary and was evaluated using the thin layer equations. The contribution from
the non-conservative terms was combined with the conservative part of the fluxes to form a first-order
approximation of the governing equations. The numerical method was shown to reduce to the standard
Godunov method for the Euler equations in the special case when the phases decouple and was shown
to maintain constant pressure and velocity exactly in the special case of free-streaming flow. An adaptive
Riemann solver was presented and used to reduce the computational cost in the calculation of the com-
bined fluxes and a second-order extension of the Godunov method was developed based on a slope-limiting
approach.

Various numerical experiments were performed in order to study the behavior and assess the accuracy of
the first-order and second-order methods. Numerical solutions of the model equations subject to piecewise
constant initial data were shown to agree well with the corresponding exact solutions of the Riemann prob-
lem. Good agreement was obtained for cases in which the left and right states consisted of a mixture of the
phases, and for cases in which one of the phases vanished in the flow. Of particular interest in these flows
was the behavior of the numerical solution near the solid contact, where the phases couple and the non-
conservative terms are important. A close study of the numerical results near the solid contact showed that
both the first-order and second-order solutions agreed well with the behavior determined by the thin-layer
equations. This suggests that the present numerical method accurately captures the assumed behavior and
jump conditions across the solid contact layer.

Smooth solutions of the governing equations were considered and solved numerically in order to verify
the order of accuracy of the first-order and second-order methods, and, finally, two other numerical meth-
ods of solution suggested by the work in [18,19] were compared with the present Godunov scheme. The
former scheme employs an HLL approximate Riemann solver to evaluate the conservative contribution
of the numerical fluxes while the latter scheme uses an exact solution of a linearized Riemann problem
to determine the conservative portion of the flux, but this was replaced by an exact solution of the Riemann
problem in our implementation of the method. Both schemes use a condition based on preserving free-
streaming flow in order to discretize the non-conservative terms. A close study of these two methods for
a problem involving a moderate jump in �a at the solid contact showed that the Godunov method developed
here performed better through the solid contact layer which resulted in better agreement with the states of
the solution on either side of the layer.

The numerical method considered here provides a useful foundation for further studies of the full model
upon inclusion of the exchange source terms. In addition, the method may be extended to handle more gen-
eral equations of state and problems in more space dimensions. These paths are under consideration for
future research.
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